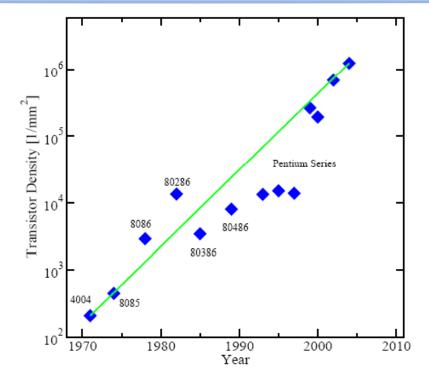


Seong-Ook Jung 2011. 5. 6. <u>sjung@yonsei.ac.kr</u>

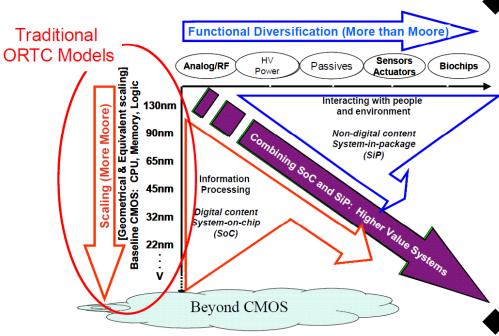
VLSI SYSTEM LAB, YONSEI University School of Electrical & Electronic Engineering

Contents

- 1. Introduction
- 2. Power classification
- 3. Power performance relationship
- 4. Low power design
 - 1. Architecture and algorithm level
 - 2. Block and logic level
 - 3. Circuit level
 - 4. Device level
- 5. OMAP processor
- 6. Summary



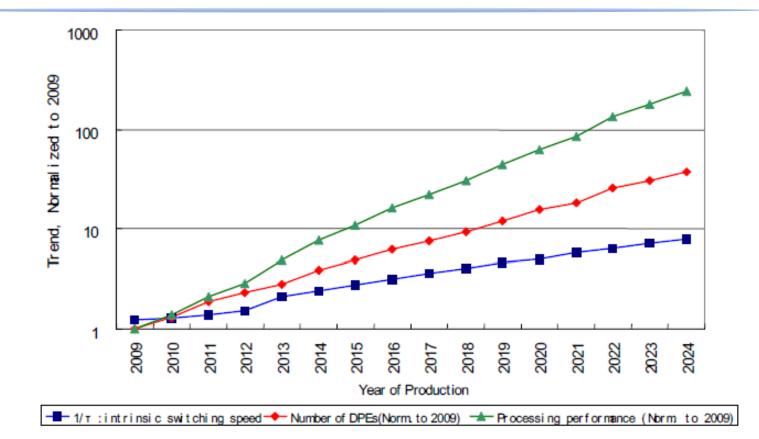
Technology Scaling

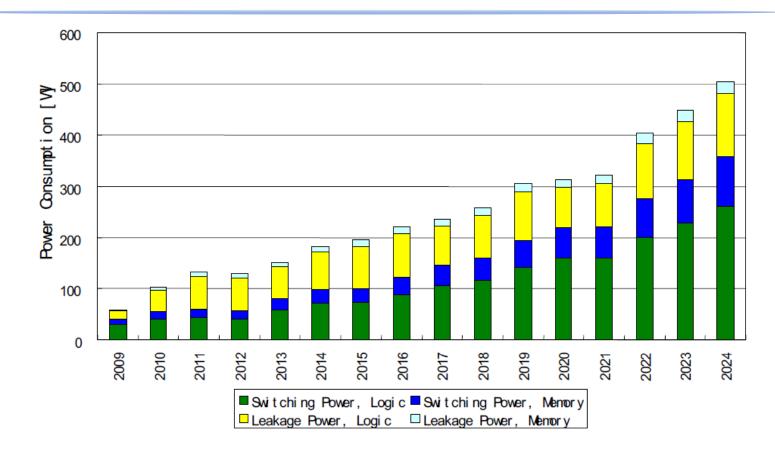

Technology scaling : Moore's law

 The number of transistors that can be placed on an integrated circuit has doubled approximately every 18 months

Development Trend

Scaling (More Moore)

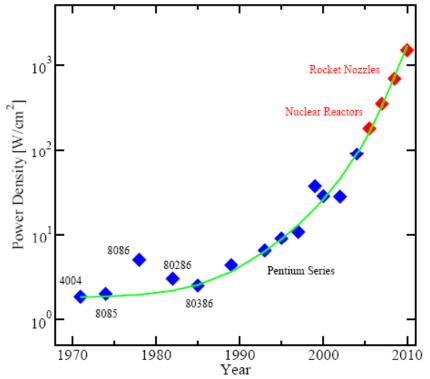

- More devices are integrated in a chip
- New scaling road map
 - Not only 'geometrical scaling' for 2D device, but also 'equivalent scaling' for 3D device
- Beyond bulk CMOS
 FinFET, SOI...
- Functional diversification (More than Moore)
 - Several functions are merged in a chip


SoC performance : exponentially increase!!

• Thanks to both device technology and design methodology

SoC Power Consumption Problem

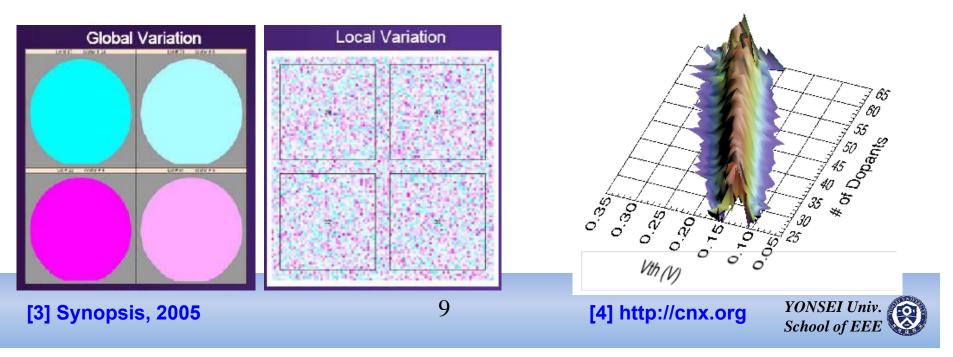
♦ SoC power consumption : 'also' severely increase


• After 15 years, x10 power is required...

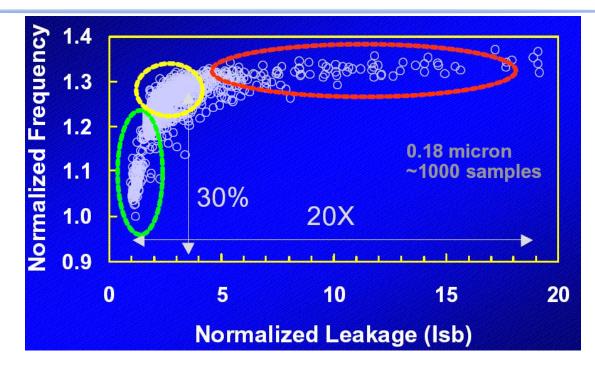
SoC Power Density Problem

Power density : exponentially increase!!

- Power consumption per die area (W/cm²)
- We would soon reach power densities of nuclear power plants or rocket nozzles in a few years!!



Process Variation Problem


Process variation : Result of scaling

- Global variation and local variation
 - Global variation
 - Comes from fabrication, lot, wafer processes
 - Different process corner (NMOS-PMOS : SS/SF/TT/FS/FF)
 - Local variation
 - Truly random variation between device with identical layout

Process Variation Problem

Performance variation due to process variation

- Frequency difference ≈ 30%
- Leakage current difference \approx x20
- \Rightarrow Process variation should be considered in SoC design

Low Voltage / Low Power limitation

- $\bullet ~ I_{\rm D} \propto ~ W/L^* (V_{\rm DD} \text{-} V_{\rm TH})^{\alpha}$
- V_{TH} variation \Rightarrow I_D variation \Rightarrow Performance Variation !!
- Need more design margin due to process variation \Rightarrow V_{DD} \uparrow

Yield limitation

• Because of process variation, failure probability $\uparrow \Rightarrow$ Yield \downarrow

저전력 SoC

2009 ITRS SPECIAL TOPICS

ENERGY

Energy consumption has become an increasingly important topic of public discussion in recent years because of global CO₂ emission. Since semiconductor electronics are broadly applicable to energy collection, conversion, storage, transmission, and consumption/usage, it is not surprising that the ITRS addresses many factors of significance to energy issues. In general, the ITRS documents the impressive trends and, more importantly, sets aggressive targets for future electronics energy efficiency, for example, computational energy/operation (per logic and per memory-bit state changes). The most detailed targets relate directly to semiconductor materials, process, and device technologies, which form the bases of integrated-circuit manufacturing and components, respectively.

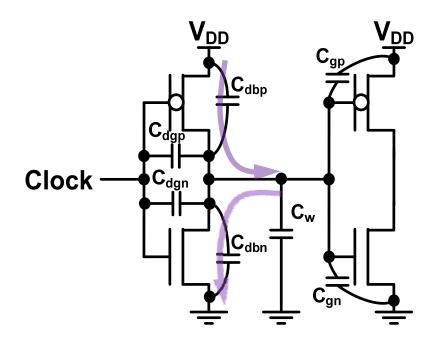
\rightarrow Low power VLSI design !!!

 \rightarrow Low process variation (high yield) design

Power Classification

Power Classification

Power consumption of CMOS circuits

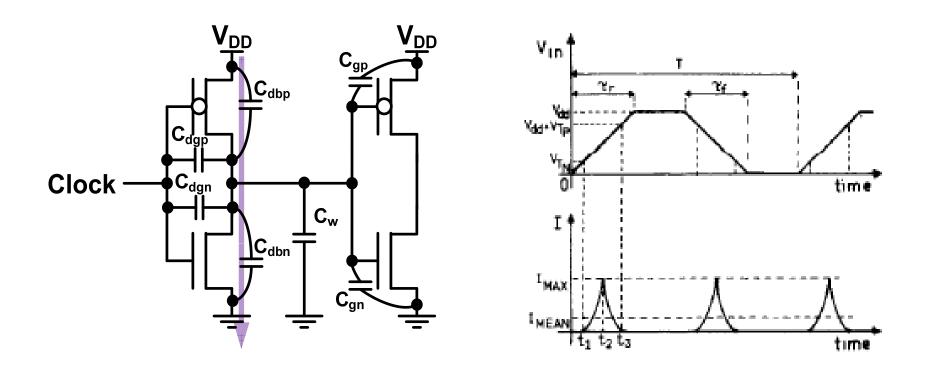

$$P_{total} = P_{dynamic} + P_{static}$$

 $P_{dynamic} = P_{sw} + P_{sc}$

Switching Power

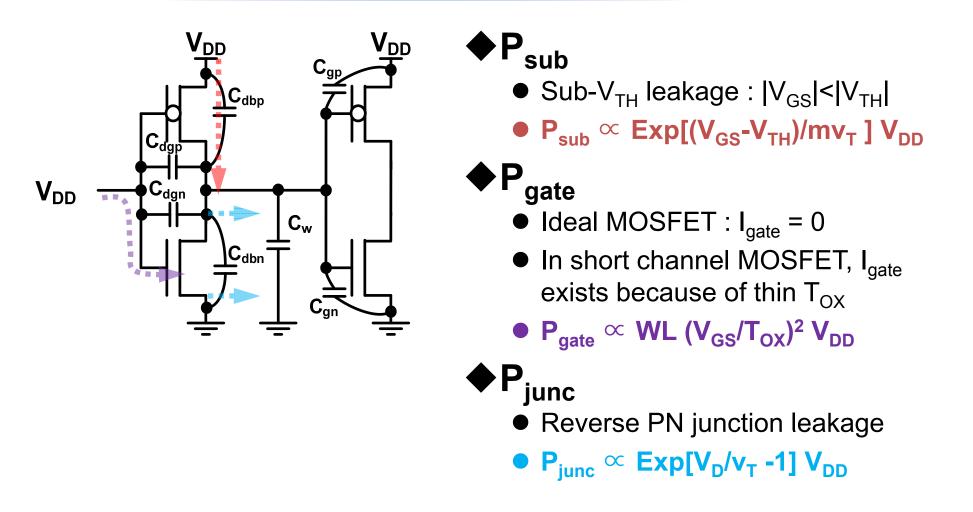
 $I=C_{L}dV/dt=C_{L}\Delta Vf$ $P_{sw}=IV_{DD}=C_{L}\Delta V V_{DD}f$ In digital circuit, $\Delta V=V_{DD}$

 $P_{sw} = IV_{DD} = C_L V_{DD}^2 f$


P_{sw} is due to the charge and discharge (output transition) of the capacitors driven by the circuit according to input transition.

•
$$P_{sw} = C_L V_{DD}^2 f$$

Short Circuit Power


P_{sc} is caused by the simultaneous conductance of PMOS and NMOS during input and output transitions.

•
$$P_{sc} = (\beta/12)(V_{DD}-2V_{TH})^3 (t_3-t_1)$$

Static Power : P_{sub}, P_{gate} & P_{junc}

♦ Power consumption equation P_{sw} = C_LV_{DD}²f P_{sc} = (β/12) (V_{DD}-2V_{TH})³ (t₃-t₁) P_{sub} ∝ Exp[(V_{GS}-V_{TH})/mv_T] V_{DD} P_{gate} ∝ WL (V_{GS}/T_{OX})² V_{DD} P_{junc} ∝ Exp[V_D/v_T -1] V_{DD}

• Case.1 : $V_{DD} \downarrow$

- All power consumption ↓
- However...
 - $\bigstar \text{Delay} \, \varpropto \, C_L V_{\text{DD}} / I_\text{D} \, \varpropto \, C_L V_{\text{DD}} / (V_{\text{DD}} \text{-} V_{\text{TH}})^\alpha$
 - $\clubsuit \text{ If } V_{\text{DD}} \downarrow, \text{ Delay} \uparrow$
 - \Rightarrow Performance loss

V_{DD} Scaling Limitation

Low V_{DD} limitation with process variation

- $V_{DD.min} = V_{T0} + K\sigma(V_T)$ $\Leftrightarrow \sigma(V_T)$: 1-sigma of V_T variation $\succ \propto T_{ox}N_A^{0.25}(LW)^{-0.5}$
- Significant increment of $\sigma(V_T)$ with technology scaling (LW $\downarrow\downarrow\downarrow$)
- \Rightarrow V_{DD} scaling meets the limitation!!
- ⇒ Process variation tolerant circuit design technique is required!!

School of EEE

[7] K.Itoh, "Adaptive Circuits for the 0.5-V Nanoscale CMOS Era", ISSCC, 2009

High V_{TH}

Power consumption equation

$$\mathbf{P}_{sw} = \mathbf{C}_{L} \mathbf{V}_{DD}^{2} \mathbf{f}$$

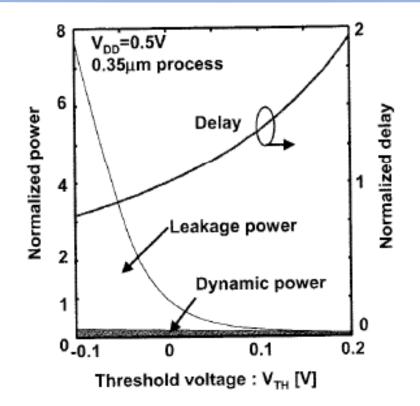
•
$$P_{sc} = (\beta/12) (V_{DD} - 2V_{TH})^3 (t_3 - t_1)$$

- $P_{sub} \propto Exp[(V_{GS}-V_{TH})/mv_{T}] V_{DD}$
- $P_{gate} \propto WL (V_{GS}/T_{OX})^2 V_{DD}$
- $P_{junc} \propto Exp[V_D/v_T 1] V_{DD}$

♦ Case.2 : V_{TH} ↑

- $\bullet~\mathsf{P}_{\mathsf{sc}}\downarrow$ and especially, $\mathsf{P}_{\mathsf{sub}}\downarrow$
- However...
 - $\bigstar \text{Delay} \, \varpropto \, C_L V_{\text{DD}} / I_D \, \varpropto \, C_L V_{\text{DD}} / (V_{\text{DD}} \text{-} V_{\text{TH}})^{\alpha}$
 - $\clubsuit \text{ If } V_{\text{TH}} \uparrow, \text{ Delay} \uparrow$
 - \Rightarrow Performance loss

♦ Power consumption equation P_{sw} = C_LV_{DD}²f P_{sc} = (β/12) (V_{DD}-2V_{TH})³ (t₃-t₁) P_{sub} ∝ Exp[(V_{GS}-V_{TH})/mv_T] V_{DD} P_{gate} ∝ WL (V_{GS}/T_{OX})² V_{DD} P_{junc} ∝ Exp[V_D/v_T -1] V_{DD}


♦ Case.3 : f ↓

- $\mathsf{P}_{\mathsf{sw}}\downarrow$
- However...
 - $\clubsuit Throughput \propto f$
 - \Rightarrow Performance loss

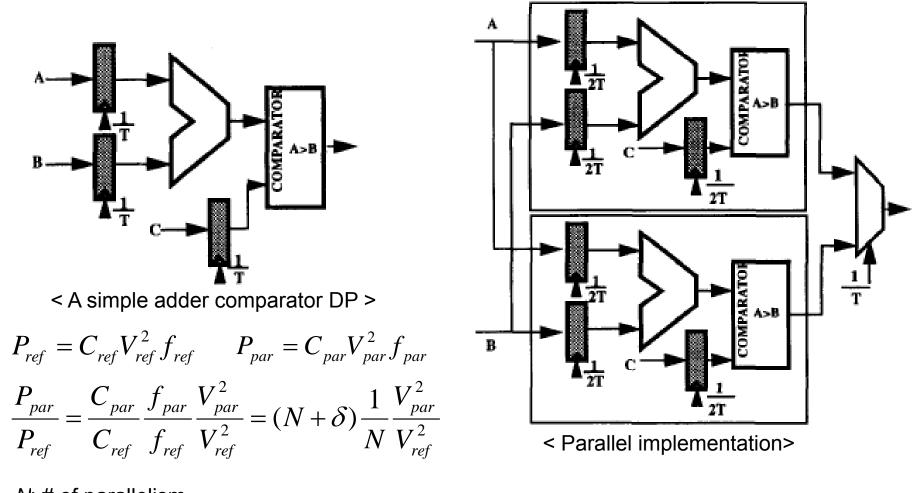
Tradeoff

- \Rightarrow Tradeoff between low power and high performance
- \Rightarrow Low power design :
 - power reduction without performance degradation

Low Power Design Methodology

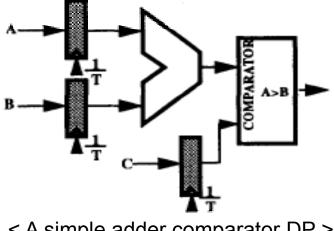
◆ To make low power SoC...

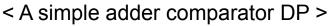
- Architecture and algorithm levels
 Parallelism, Pipeline ...
- Block and logic levels
 - V_{DD} / Frequency scheduling by monitoring workload (AVFS)
 - Temperature management to reduce leakage current
- Circuit level
 - ✤ Circuit type (Dynamic, static, …)
 - ✤ Circuit technique (Dual V_{DD}, Dual V_{TH}, MTCMOS, …
- Device level
 - Control the process parameter
 - ➤ Halo doping, retrograde well...
 - ✤ Low leakage new device
 - ➢ SOI, FinFET …

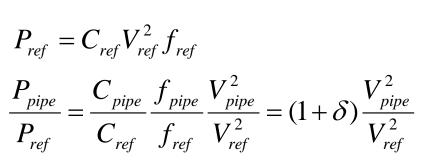


Architecture and Algorithm Levels

Parallelism


N: # of parallelism δ : a slight increase in capacitance due to the extra routing


[8] A.P. Chandrakasan, "Minimizing power consumption in digital CMOS circuits", Proc. of IEEE,995



Pipeline

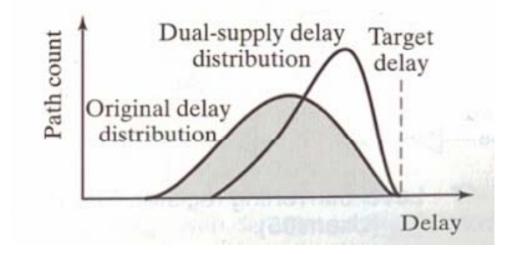
< Pipeline implementation>

$$P_{pipe} = C_{pipe} V_{pipe}^2 f_{pipe}$$

N: # of pipeline stage δ : a slight increase in capacitance due to the extra latch

28 [8] A.P. Chandrakasan, "Minimizing power consumption in digital CMOS circuits", Proc. of IEEE,995

Circuit Level Low Power Techniques

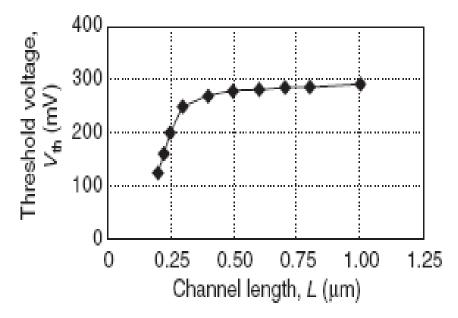

Low power techniques

- Multiple channel length
- Stacked transistor
- Dual V_{DD}
- Dual V_{TH}
- MTCMOS (Multi Threshold voltage CMOS)
- DVS (Dynamic Voltage Scaling) : open-loop / closed loop

Critical Path

Critical Path : The worst case delay path

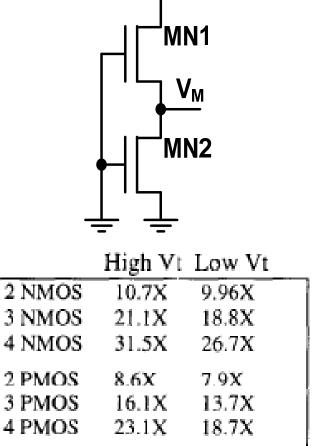
- Determines SoC's maximum performance
- # of critical path << # of non-critical path
- Fast non-critical path is just wasteful...
 - ⇒By increasing non-critical path's delay, we may achieve power reduction because of tradeoff relation between power & performance



Multiple Channel Length

Threshold voltage roll-off

- Longer L
 - ✤ Higher Vt
 - Low leakage with low performance
 - Used in non-critical path



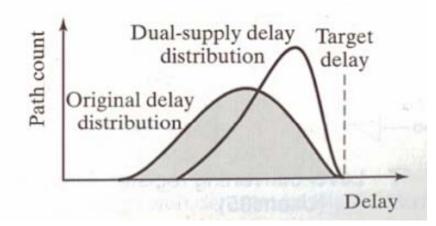
Stacked Transistor

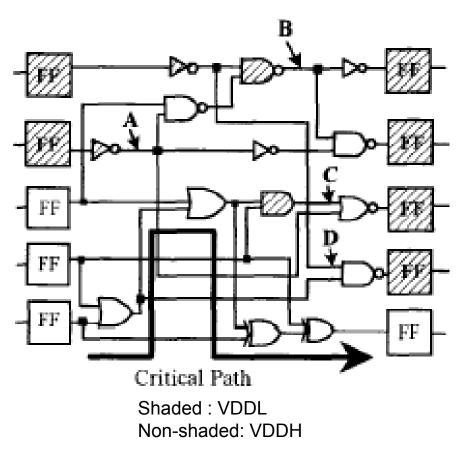
◆ V_M level • V_M > 0 due to leakage current. • Negative V_{GS_MN1} • Positive V_{SB_MN1} → Increase in V_{TH} by body effect $P_{sub} \approx \left(e^{\frac{-(V_{gs} - V_{th})}{mv_{T}}}\right)V_{dd}$ Hi → Large reduction in I_{sub}

Primary input vector control to utilize the stack effect in the standby mode

V_{DD}

Dual V_{DD}

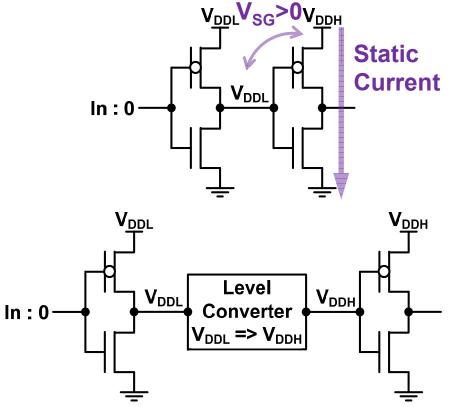



Basic idea

• V_{DDL}

✤ Logic gates off the critical path

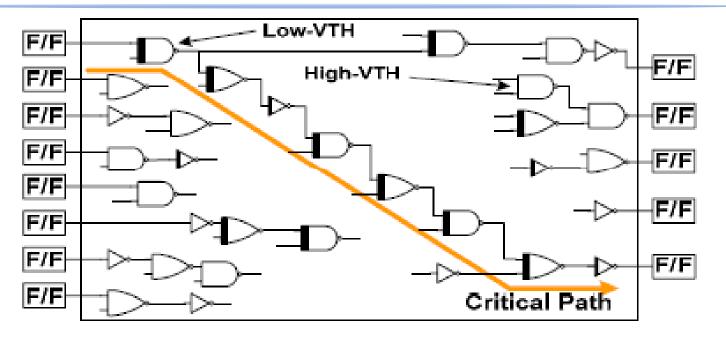
- V_{DDH}
 - ✤ Logic gate on the critical path
- Reduce power without degrading the performance



Dual V_{DD} : Design Issue & Target

♦ Issue

- Static current flow at a V_{DDH} gate if it is directly drive by a V_{DDL} gate
- Level converter is needed
- \Rightarrow Overhead of area and power



Design target

 For a give circuit, choose gates for V_{DDL} application to minimize power consumption while maintaining performance with consider level converter.

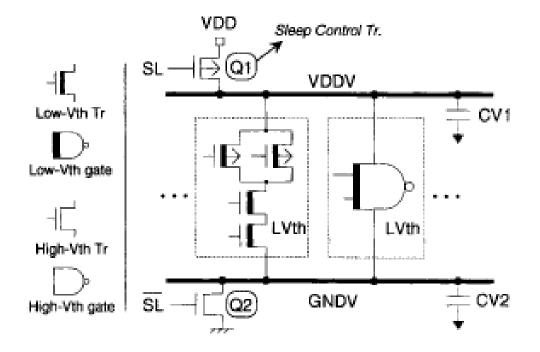
♦ HVt

- Assigned to transistors in noncritical path.
- Leakage saving in both standby and active modes
- ♦ LVt
 - Assigned to transistors in critical path
 - Maintained performance

MTCMOS : Basic

MTCMOS : Multiple Threshold voltage CMOS Low power & low Energy • $E_{ToT} = E_{STD} + E_{ACT} = P_{static} * t_{STD} + P_{dynamic} * t_{ACT}$ • Portable device : $t_{STD} >> t_{ACT}$ 8.0 Basic circuit scheme 10E6 lsub tpd [nomalized] <u>nen</u> 10E5 • Two different Vt 6.0ីត្ 10E4 ✤ HVt (0.5~0.6V) 10E3 **❖** LVt (0.2~0.3V) 4.0 Vdd 10E2 • Two operating mode Delay Time 10E1 Active 2.010E0 978 Standby 10E-1 ____ 10E-2 0.8 0.0 0.6 0.20.00.4Threshold Voltage Vth [V]

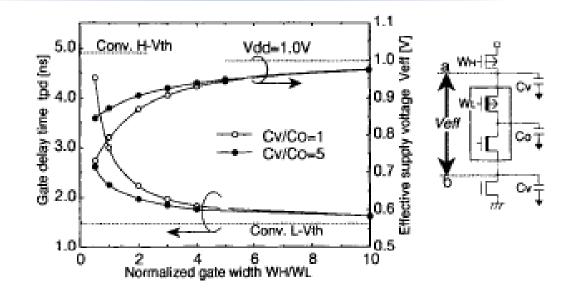
MTCMOS : Scheme



Active mode

- SL=1 / <u>SL</u>=0
- $V_{DDV} \approx V_{DD} / V_{GNDV} \approx V_{GND}$
- LVt operating frequency

Standby mode

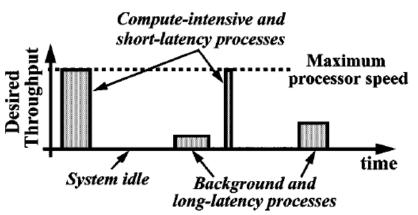

- SL=0 / <u>SL</u>=1
- $V_{DDV} \& V_{GNDV}$ = floating
- HVt leakage

MTCMOS : Constraint

Performance constraint according to

- Normalized foot/head switch size : W_H/W_L
- Normalized cap on VDDV/VGNDV : C_V/C_O

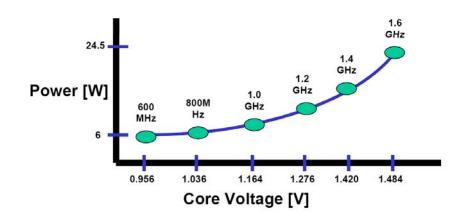
Area penalty


 Relatively small because Head/Footswitches are shared by all logic gates on a chip (global foot switch)

DVFS : Basic Concept

Basic concept

- $P_{dynamic} = CV_{DD}^2 f$
- V_{DD} and frequency scaling simultaneously
- V_{DD} scaling
 - \bigstar A best way to get low $\mathsf{P}_{\text{dynamic}}$ because $\mathsf{P}_{\text{dynamic}} \propto V_{\text{DD}}{}^2$
- Frequency scaling
 - Operating frequency = throughput
 - Not all task requires maximum throughput
 - By controlling the frequency, SoC improves energy efficiency



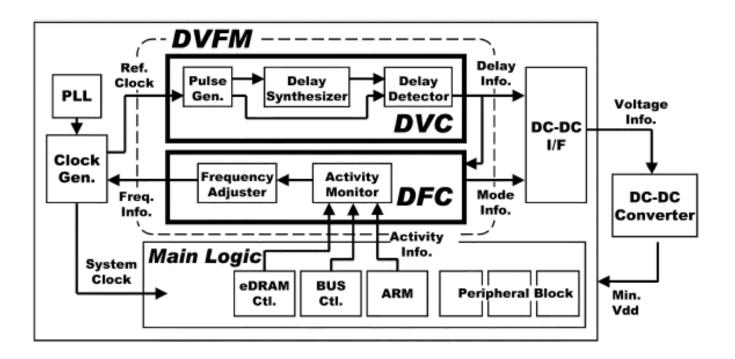
DVFS : Open loop VS. Closed Loop

Open loop system

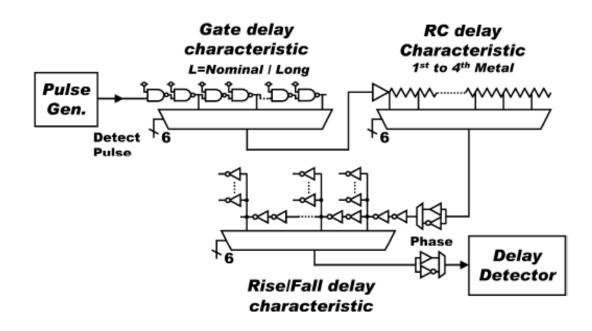
- Can not adapt to PVT variations
- Need more design margin
- Example
 - Enhanced SpeedStep technology of Intel

Closed loop system

- Can adapt to PVT variations
- Need less design margin
- Example
 - Intelligent Energy Management technology of ARM
 - SmartReflex2 of TI OMAP processor

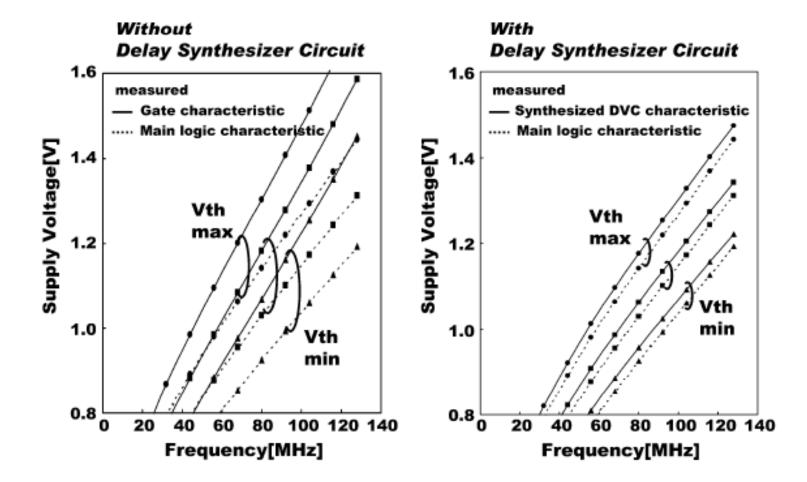


DVFS (SONY, PDA)


Block Diagram

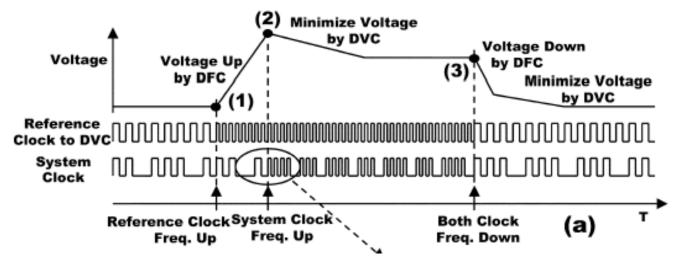
Closed loop system

Delay Synthesizer Structure



- Composed not only a simple transistor delay factor, but also wire delay and rise/fall delay
 - Gate delay component : one of nominal gate length and another of long gate length
 - RC delay component : wires from each of the four metal layers and its total length is 14mm

Delay Synthesizer Effect

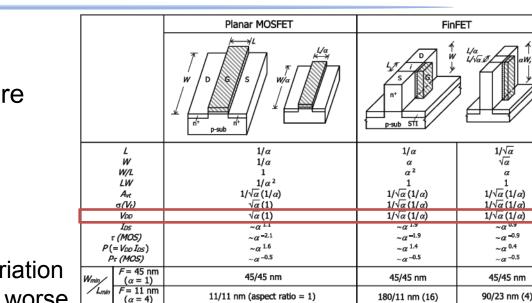


Operation (DVC+DFC)

Operation procedure

- Low → High : The main logic clock frequency is changed after the DVC confirms the voltage has increased enough
- High → Low : Both the DVC reference clock and the system clock are changed simultaneously

Device Level


Device Level Low Power Technique

♦ FinFET

- FinFET : Vertical structure
 Planar MOSFET width
 FinFET height
- σ(V_T) ∝ T_{ox}N_A^{0.25}(LW)^{-0.5}
 As scaling goes on, variation of planar MOSFET get worse

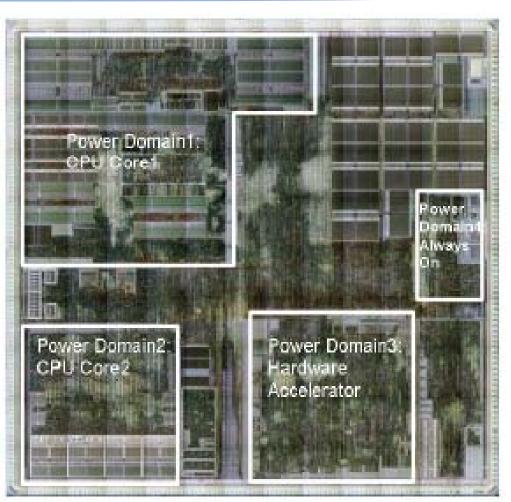
 \succ V_{DD} scaling is impossible

- FinFET width doesn't occupy the active area
- As scaling goes on, L*W of FinFET can be maintained
- > V_{DD} scaling is possible ⇒ low power !!

 $A_{vt} \propto t_{OX} N_{sub}^{0.25}, \sigma(V_t) = A_{vt}/\sqrt{LW_t} I_{DS} = \beta (V_{DD} - V_t)^{1.2}$ for constant $N_{sub}, \tau (MOS) = V_{DD} C_G/I_{DS}$

OMAP Processor

- Dual core platform
- Multimedia hardware accelerators for video and graphics
- Frame buffers
- Various dedicated and general purpose interfaces
- Power saving mode
 - Idle (Clock stopped)
 - Retention for low leakage
 - Fast re-start and power-off mode
 - Power gating technique



Power Domains

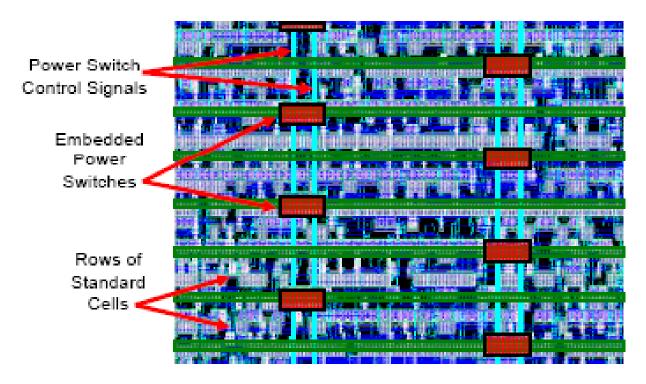
◆ 5 power domains

- Processor core 1
- Processor core 2
- Hardware accelerator (Graphic)
- Always on
- Rest of the chip (including the interconnects and various peripherals)

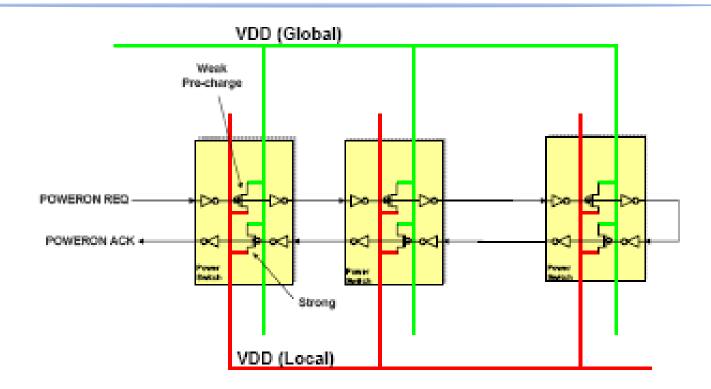
Power gating

- Global mesh built with the highest metal layer distributes power and ground across the chip
- Local mesh is broken to reflect the power domain partitioning
- Power switch makes connection between global mesh and local mesh according to operating modes and switch control
 - If power domain is on, its power switches connect its local plane to the global plane., i.e., the constant power supply
 - Otherwise that plane drifts to a potential near ground

Power switch

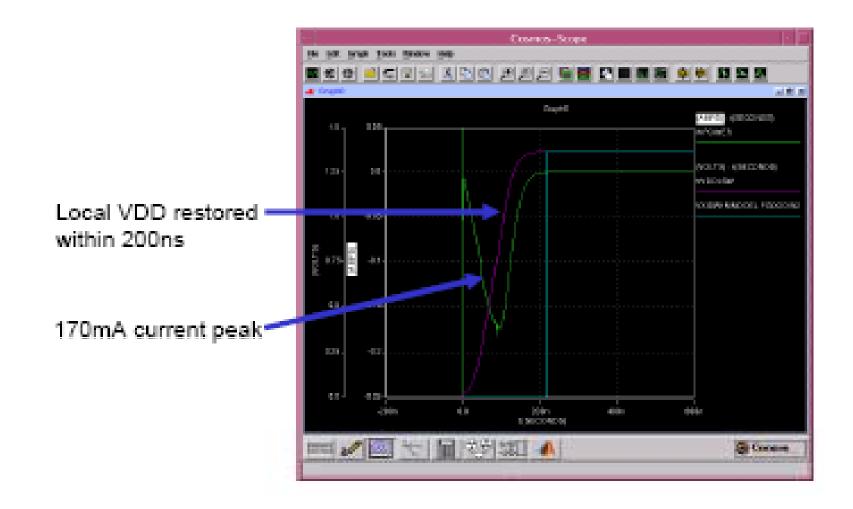

- Embedded in power domains
 - by placing power switches at a regular pitch in a staggered manner
 - by placing power switches around hard lps
- Header switch
 - ✤ 90um PMOS with 200uA current driving capability at worst case
 - Multiple fingers and redundant vias

Embedded Power Domains



- Other power management cells
 - Retention flip-flops
 - Constantly powered buffers to transport critical signals through a power domain potentially off
 - Isolation cells to prevent the propagation of a non-state

Power Switching Control

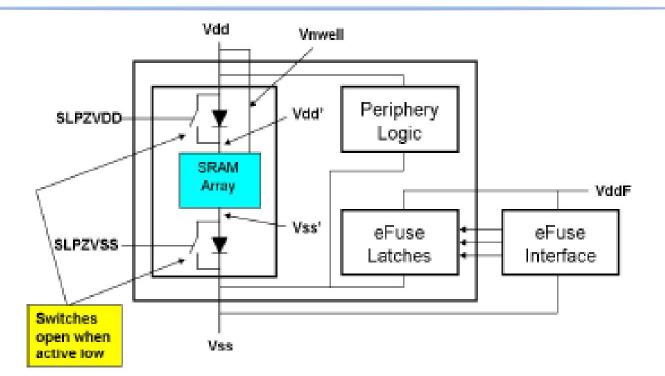

Current surges and dynamic IR drop

- Two-pass turn-on mechanism
 - Weak PMOS to sinks low current for power restore: Turn-on first
 - Strong PMOS to deliver current for normal operation: Turn-on next

Current Surge and Power Restore

ISSCC05, 138-139

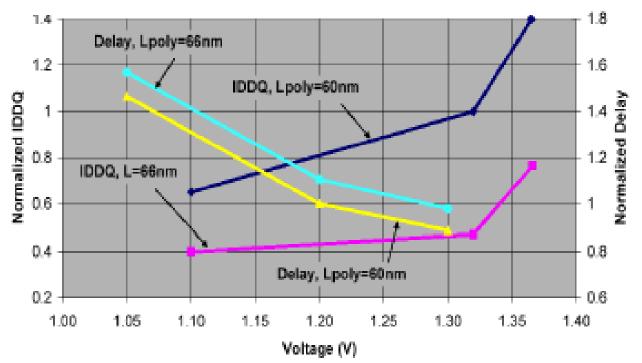
Leakage Current Reduction


◆ In off mode

- Leakage current comes from power switches and power management cells
- 4 power switches per Kgate
 ~40X leakage reduction

SRAM Retention

• Footer and header diodes


- In active mode, the diodes are bypassed
- During retention mode, one diode is enabled and
 - Field across the array is reduced
 - Reverse body bias
 - \rightarrow Leakage saving (x2)

Dual Gate Length

Dual gate length

- Standby mode: 30% leakage reduction
- Active mode: active leakage current saving: very useful if many blocks are idle in active mode
- Vdd scaling during the slow active mode
 - 300mV scaling: 2X leakage reduction

Summary

Green SoC design \Rightarrow Low power & process variation tolerant SoC design $\mathbf{P} = \mathbf{P}_{sw} + \mathbf{P}_{sc} + \mathbf{P}_{sub} + \mathbf{P}_{gate} + \mathbf{P}_{junc}$ **P**_{static} P_{dynamic} Power and performance : Trade-off Low power design • Architecture and algorithm level : parallelism, pipe line Block and logic level : workload monitoring, V_{DD}/frequency scheduling Circuit level ♦ Long channel : Reduce I_{leak} by using V_{TH} roll off $(V_{TH}\uparrow)$ Stacked MOSFET : Reduce I_{leak} by using body effect (V_{TH}↑) & negative V_{GS} Dual V_{DD}: Use low V_{DD} at non-critical path • Dual V_{TH} : Use low V_{TH} at non-critical path ✤ MTCMOS: Use high V_{TH} sleep TR (low leakage in stand-by mode) & low V_{TH} logic (high performance in active mode) • DVFS : Reduce dynamic power by controlling both V_{DD} & frequency

• Device level : FinFET

